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Since the early days of chemical kinetics it has 
been recognized that  collisions between the reacting 
molecules constitute the microscopic mechanism un- 
derneath the observed, bulk, macroscopic reaction 
process. It is, however, only recently that progress in 
both experimental techniques and theoretical inter- 
pretation has brought us to the point where we can 
probe an elementary chemical reaction directly on 
the microscopic, molecular level.1-9 We are entering 
an era where the intimate details, the evolution of 
reactants to products in a single collision, can be ex- 
amined by the methods of chemical dynamics.1 

It is now possible to prepare reactants in fairly 
well-defined internal states and determine whether 
chemical reaction takes place during the single colli- 
sion between them. One can thus study the role of 
internal energy of the reactants in bringing about a 
chemical rearrangement.5 One can also select the ve- 
locity with which the reactants collide. As an illus- 
tration, the exothermic reaction5c 

HI  + DI -+ HD + 1, ( 1) 
fails to go even when there is more than enough 
translational energy of the colliding molecules to 
overcome any activation barrier. Upon collision the 
two molecules simply rebound, without any chemical 
rearrangement taking place, when the reactants are 
vibrationally cold. 

I t  is also possible to resolve the internal states1J36 
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(and/or the velocity4) of the product molecules 
emerging from a single collision. Very often, the in- 
ternally excited nascent products of an elementary 
exoergic collision emit radiation (ir, visible, or uv) 
allowing identification of the excited product 
states.2-6 As an example, consider, e.g. , l  

F + H , + H F + H  (11) 

In a single reactive collision the H2 bond has been 
replaced by the stronger HF  bond. During the colli- 
sion, the exoergicity is released into product transla- 
tional recoil and internal energy of the newly formed 
HF molecule. When the reaction is studied in bulk, 
the nascent product molecules proceed to collide 
with other molecules. The transfer of energy upon 
these subsequent collision tends to “disperse” the 
exoergicity of the reaction among all the bath mole- 
cules, and the energy released in the reaction ap- 
pears as heat. (In conventional terms the reaction is 
exothermic.) From a fundamental viewpoint, how- 
ever, we are more concerned with the outcome of a 
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single reactive collision. Immediately after the reac- 
tive collision, before the products had time to engage 
in subsequent collisions, how is the reaction exoergi- 
city partitioned? 

Experiment shows that the exoergicity is never re- 
leased exclusively into the relative translation but 
always goes a t  least partly into internal excitation of 
the product molecules. Often a very considerable 
fraction of the available exoergicity appears as inter- 
nal excitation (some 67% for reaction 11, for exam- 
ple). To accommodate this excess energy, excited in- 
ternal states of the products are often preferentially 
formed. In reaction I1 the population of the u = 2 vi- 
brational level of the newly formed WF is some 18 
times greater than that of the ground ( u  = 0) level. 
The internal-state populations of the nascent prod- 
ucts are usually found to  be distributed in a non- 
Boltzmann way, often with “excess” population of 
higher states. This “population inversion” is the 
basis for chemical laserl,7 action. 

We can thus characterize energy disposal by the 
statement that elementary exoergic reactions are 
usually highly specific in their mode of energy re- 
lease. 

Just as the exoergic elementary reactions show 
specificity in their energy partitioning. so the reverse 
(endoergic) reactions exhibit a high degree of selec- 
tivity in their mode of energy consumption. Consider 
the time evolution of reactants to form products in 
an exoergic reaction with a quite specific pattern of 
energy release. Now reverse the direction of time. 
The “products” will now collide and evolve to form 
the “reactants.” In so doing, the disposed exoergicity 
of the forward reaction is being consumed to over- 
come the energy barrier of the reverse (necessarily 
endoergic) reaction. If the “forward” reaction leads 
to products with high internal excitation, then mi- 
croscopic reversibilitys implies that the “reversed” 
reaction proceeds more readily when the energy is in 
the internal degrees of freedom of the reactive mole- 
cules rather than in relative translation. 

I t  is not just the total available energy which de- 
termines the reaction probability. It becomes impor- 
tant to determine how and why the system is selec- 
tive in utilizing different modes of energy. A fairly 
general characteristic of elementary reactions can be 
stated as: specificity of energy release and selectiuity 
of energy consumption. 

When chemical reactions are studied in the bulk 
under conditions which ensure thermal equilibrium 
(e.g., an excess buffer gas, low reaction rate), the ef- 
fects we are considering are not readily evident. En- 
ergy-transfer collisions rapidly repopulate any inter- 
nally excited reactant levels which are depleted be- 
cause of their enhanced reactivity. Similarly, such 
collisions rapidly equipartition any energy excess (or 
deficiency) in the reaction products. In the limit 
when the energy transfer is very much faster than 
the reaction rate (the limit of thermal equilibrium), 
selectivity of consumption (or specificity of disposal) 
is lost. Such “dynamic” effects are only evident in 
bulk systems when the reaction rate competes with 
the rate of relaxation to thermal equilibrium. This 
competition will be particularly important in those 
kinetic situations where the products of one elemen- 
tary exothermic reaction are the reactants of a sub- 

sequent reaction. The overall kinetic behavior of the 
system may then be very different from that  expect- 
ed on the basis of bulk macroscopic rate constants 
determined for reactants in thermal equilibrium. 

This prevalence of disequilibrium is especially well 
known in shock-tube experimentslOJ1 and in flame, 
combustion, and explosion kinetic studies.12 A very 
important newcomer is the kinetic study of processes 
in chemical laser c a v i t i e ~ . ~ J ~ J ~  To handle such dis- 
equilibrium systems we must learn how to deal with 
the nonequilibrium internal-state population distri- 
bution. A knowledge of the microscopic rate con- 
stants ( i , e . ,  the reaction rate for the reagents in dif- 
ferent internal states) and not just their thermal av- 
erage (i .e. ,  the overall, bulk rate) is necessary in 
order to  predict the kinetic behavior of fast reacting 
systems in the bulk gas phase.9 

In view of the current (e.g., chemical lasers7) and 
potential (e.g., isotope separation,l5 selective syn- 
thetic pathways) practical applications9 of chemical 
reactions in disequilibrium systems, one obviously 
would like to construct a framework for the discus- 
sion and interpretation of such phenomena. The de- 
tailed experiments under single-collision conditions 
are also of considerable theoretical interest. 

The primary output of modern molecular collision 
computations3~6,17 are the detailed, state-to-state 
reaction rates or cross sections. (Recall that on the 
microscopic level the reaction rate coefficient h is re- 
lated to the reaction cross section UR by k = (vu,) 
where u is the relative velocity of the colliding reac- 
tants.1) The dynamical computations may be based 
upon quantum scattering theory3 ~ 6 , 1 7  or the classi- 
cal mechanical trajectory (Monte Carlo) method18 
or, more recently, semiclassical approaches,lS 
employing ab  initio or semiempirical potential sur- 
faces.l,18 The interrelation between the detailed 
cross sections and their energy dependence and the 
topology of the potential energy surface(s) (which in 
turn depends upon the electronic structure of the 
reactants, products, and the combined system) is a 
central question in the field of modern chemical 
reaction dynamics.l.17 ~8 

The effort involved in acquiring so much detailed 
dynamical information on elementary chemical reac- 
tions is great, but so are the rewards in terms of un- 
derstanding. However, there is still another price to 
be paid for this wealth of detail, and that is the very 
task of digesting it, of assimilating it, of compacting 
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it, of systematizing it. To cope with this overwhelm- 
ing body of microscopic data, the use of information 
theory20 would appear to be a natural approach. The 
purpose of this Account is to show the role which in- 
formation-theoretic methods have played in dealing 
with the ever-increasing body of experimental and 
theoretical results in the field of molecular reaction 
dynamics .21-36 

The Product State Population Distribution: 
Surprisal 

The energetics and vibrational energy disposal of 
the elementary exoergic reaction 

C1 + HI -.+ I f HC1 (IIQ 
are shown in Figure 1. To account for the population 
of the different vibrational levels of HC1, one could 
argue that  this is just a question of solving the dy- 
namical equations of motion on an appropriate po- 
tential energy surface. While such computations are 
now feasible (a t  least a t  the level of classical me- 
chanics on a single potential energy surfacel8) they 
cannot, in themselves, provide a qualitative interpre- 
tation of the results. For this purpose, let us first 
consider what features of the distribution shown in 
Figure 1 could have been expected a priori. 

The total energy E of the colliding molecules is a 
conserved quantity (constant throughout the colli- 
sion) and a very important variable.1.21327 I t  thus 
determines which states of the products are allowed 
to  be populated. The total energy E is usually de- 
fined with respect to the lowest possible energy state 
(of either reactants or products) as shown in Figure 
1. For a particular initial reactant state the total en- 
ergy is the sum of the internal energy of the reac- 
tants, their relative translational energy, and the 
(zero-point to zero-point) exoergicity, -AEo, of the 
reaction. After the reactive collision the energy is 
partitioned between the products’ internal energy 
and translational energy (2’). If the products are an  
atom and a diatomic molecule, this internal energy 

(20) (a) C. E. Shannon and W. Weaver, “Mathematical Theory of Com- 
munication,” University of Illinois Press, Urbana, Ill., 1949; (b) A. J. Khin- 
chin, “Mathematical Foundations of Information Theory,” Dover Publica- 
tions, New York, N.Y., 1957; (c) E. T. Jaynes, “Statistical Physics,” Bran- 
deis Lectures, Vol. 3, W.  A. Benjamin, New York, N.Y., 1963, p 81; (d) R. 
Ash, “Information Theory,” Interscience, New York, N.Y., 1965; (e) A. 
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proach,’’ W. H .  Freeman, San Francisco, Calif., 1967. 
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(34) R. D. Levine and R. Kosloff, Chem. Phys. Lett., 28,300 (1974). 
(35) R. D. Levine and R. B. Bernstein, Chem. Phys. Lett., in press. 
(36) R. D. Levine and 0. Kafri, Chem. Phys. Lett., 27,175 (1974). 

Figure 1. Schematic drawing of reactant and product diatomic 
potentials, energy levels, and product vibrational-energy distribu- 
tion for reaction 111. Here E - E, - E ,  is the energy which goes 
into rotation of the HC1 product molecule. 

is the sum of the vibrational (V) and rotational ( R )  
energy of the diatom, E = T + (V  + R ) .  

An immediate consequence of the conservation of 
energy is that  the highest allowed vibrational state u 
of HC1 is determined by the condition V 5 E .  We 
can express this restriction in a more natural way127 
by considering the ratio fv = V I E ,  the fraction of the 
available energy partitioned into the vibration of the 
products. Clearly, fv is restricted to be in the range 
of 0 to 1, irrespective of the magnitude of E or, for 
that matter, of an  isotopic substitution (e.g., replac- 
ing HI by DI so that the product is DC1). In a similar 
fashion we can introduce the fractions f T  = TIE and 

Thus we are not surprised to find that  for all the 
vibrational states of the products 0 5 f v  5 1. But 
how surprised are we a t  the individual state popula- 
tions? Is it very surprising that  the u = 3 state of 
HC1 in Figure 1 is the level most heavily populated 
by the reactive collision, or should we have expected 
that, a priori? To answer this question we must clar- 
ify two points. First, what are our prior expectations, 
and second, what constitutes a measure of our sur- 
prise? 

A quantitative measure of the “surprisal” of an 
outcome has been proposed by Claude Shannon in 
1948, in his fundamental paper on information theo- 
ry.20 We can recast his argument as follows. Let A 
and B be two independent events and let I(A) and 
I(B) be the surprisals associated with observing 
events A and B, respectively. Suppose that  we ob- 
served the occurrence of both A and B.  Since they 
are independent events, our observation that event A 
has happened in no way changes our expectations 
about event B. Hence, it is reasonable to impose the 
condition that  our surprisal a t  the combined event 
(both A and B) be the sum of the surprisals a t  each 
individual event (eq 1). The definition of the surpri- 

(1) 
sal should also be such that, the more probable the 
event, the less surprised we are a t  observing it. This 
implies that  the surprisal, 1(.4), should be a mono- 
tonically decreasing function of the probability, 
P(A), of the event A. These two conditions are suffi- 
cient to obtain Shannon’s original definition. We re- 
call that  if A and B are independent events, P(A and 
B) = P(A)P(B). It then follows from the above that  
I(A) varies logarithmically with P(A). Specifically 

Z(A) = -In P(A) (2) 
The definition above is not quite sufficient for our 

purpose. The events we wish to consider (say, the re- 

f R  = R / E  = 1 - f v  - f T .  

Z(A and B) = <A) + Z(B) 
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active collision yielding a given vibrational level of 
HC1) are not elementary events, but can be realized 
in a large number of ways. As an example, consider 
many repetitions of the experiment consisting of 
tossing two coins. In a large number of trials we will 
observe that the outcome “the two faces are differ- 
ent” occurs more frequently than the events “both 
heads” or “both tails.” Yet, we do not find this re- 
sult surprising. Our a priori expectations are that a 
fair coin toss will yield either heads (H) or tails (T), 
with equal probability, unless the coin i s  biased. In 
the combined experiment the possible outcomes are 
then HH, HT,  TI<, and TT (with equal probability, 
in the absence of bias). The event ‘‘the two faces are 
different” is more probable simply because it corre- 
sponds to two possible elernentary outcomes (HT 
and TW). We are a priori prepared for this event 
being more probable, and are thus not surprised 
when our a priori expectations are realized. In  other 
words, -In P(A)  corresponds to our intuitive notion 
of a surprisal only when all observed events are, a 
priori, equally probable. When this is not the case, 
we must assign to each event its prior probability, 
PO(A). This prior distribution should reflect any a 
priori information we may have about the distribu- 
tion of outcomes. Tn particular, as shown by our coin 
tossing example, the prior probability is a measure of 
the number of (equally probable) elementary events 
that correspond to the outcome in question. 

We thus define the surprisal as the difference be- 
tween the post and prior values21 3 , 3 0  

I(A) = -In P(A) - [-ln Po(A)] = -In [ P ( A ) / p ( A ) ]  ( 3 )  

If the event A occurs with the same probability as 
initially expected (i.e.,  P ( A )  = P ( A ) ) ,  then we are 
not surprised (I(A) = 0). 

The surprisal I(A) is then a measure of the devia- 
tion of the observed probability P(A)  from the a 
priori expected probability P ( A ) ,  such that 

P(A) = p ( A )  exp[--I(A)] (4) 

Rather than reporting the probability of the event 
one can report its surprisal, its deviation from expec- 
tation. (But to characterize a distribution, we still 
need as many different surprisals as the number of 
possible events!) 

Let us apply these ideas to the distribution of 
product vibrational states. First we need to specify 
the a priori distribution. At  a given value of the total 
energy, and in the absence of additional prior infor- 
mation, all possible products’ quantum states can be 
assumed to be equally probable. The physical ratio- 
nale for this assumption is that during a reactive col- 
lision the molecules undergo severe rearrangements 
and deformations, and since considerable energy is 
involved, strong selection rules are unlikely, so that 
all final quantum states would be expected to be 
roughly equiprobable. The assumption that  all con- 
servation-allowed final products’ quantum states are 
equally probable is the basis of a statistical model of 
reaction rates. However, here the statistical model is 
used only to compute the distribution in the absence 
of prior information. We then compare the observed 
with this a priori distribution in order to obtain the 
surprisal. 

The prior expected distribution of product states is 
thus to be computed from the assumption that all 
final quantum states of the products (at a given en- 
ergy) are populated with equal probability. Now, if 
the product diatom is in the vibrational state u, the 
energy E - V is available for partitioning among the 
rotation of the diatomic molecule and the relative 
translation of the atom and the diatomic molecule. 
The smaller the u, the more energy is available to 
populate the rotational and translational states. 
There are more quantum states of the products that 
can be populated for low than for high u (a t  a given 
energy). 

A very simple cdiculation provides a more quanti- 
tative description. ‘%‘he number of quantum states 
(per unit volume) when the translational energy is in 
the range T to T + dT is”3’ ATq %T, where A is a 
combination of constants. Hence the number of 
quantum states (per unit volume) of the products 
when the diatomic molecule is in the vibrational 
level u and rotational level J and the translational 
energy is in the range T to T + dT is (W + 
1 ) A F  2dT, where (W 4- 1) is the degeneracy of the 
level J. Consider a model of the diatomic as a har- 
monic oscillator-rigid r0tor”*~7 (RRHO). The rota- 
tional energy R = Bd(J -+- 1) can often be regarded 
as a continuous variable. The number of available 
quantum states when the diatomic is a t  the level u 
and the total energy is E can be obtained by inte- 
grating over all values of R and T such that R f T = 
E - V. 

J d R  Jd?‘A9T1’26(E -- V -- R - T )  = 

E-V 

AfL dR ( E  - V - R)”’ = A” ( E  - ~ 3 1 2  ( 5 )  

Here A’ and A ”  are combinations of constants. Since 
R(fv) = P(V)(dV/dfv), we obtain 24 

(6) 

A more exact treatment of the energy levels some- 
what modifies the functional dependence on f v ,  but 
the major qualitative prediction of this equation is 
unchanged: a priori, P(v) is a decreasing function of 
V Thus, in the absence of any dynamic bias, a con- 
siderable fraction of the exoergicity is released as 
translation. The observation that this is not neces- 
sarily so indicates that  the distribution of the vibra- 
tional states of products is not really statistical but 
is somehow constrained by the dynamics. 

Having decided upon the a priori distribution 
P(\n, we can evaluate the surprisal of the observed 
populations (eq 7). A plot of the vibrational surprisal 

Pocr”,) = (5/2)(1 - fv)3’2 

rvV) = -In I ~ ( j= , ) I~~c f~ ) l  (7) 

us. f b r  can reveal the trends in the “deviation from 
expectation” as a function of  the degree of vibration- 
al excitation of the product. 

As an illustration of the analysis of vibrational 
population inversions, we show a number of surprisal 
plots derived from the literature. 

Figure 2 shows the results for the reaction F -+- 
MBr - HF(u) -+ Wr. Plotted are the observed rela- 

(37) J .  L. l i insey,J.  Chwn. Phys., 51,120G (1971). 
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Figure 2. Surprisal ana ly~ i s2~  of the product vibrational-state 
distribution of the F + HBr reaction. The upper abscissa scale is 
u, the lower scale fv. Lower panel: comparison of the observed 
final vibrational-state population (P)  with the prior expectation 
(Po). Upper panel: vibrational surprisal plot. 
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f V 
Figure 4. Surprisal analysis of a nonhydrogenic reaction. (Plot 
similar to Figure 2.)  The vibrational spacings are narrower and 
many more levels can be populated; the surprisal plot is essen- 
tially linear. 
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Figure 4 shows analogous results for a nonhydroge- 
nic system, the population-inverting reaction: 0 + 
CS + CO(u) + S. The surprisal is seen to  be a near- 
linear function of the fraction f v  as before. The pop- 
ulation inversion can be characterized by the large 
(negative) A, value from the slope of the surprisal 

Although linear surprisals are found for many 
reactions, this is not a completely general finding. A 
notable exception is the reaction type H + X:! - H X  
+ X (where X = halogen and D may replace H), for 
which vibrational surprisal plots are found to be 
nonlinear.24 (Even so, the variation of the surprisal 
with fv (or with the total energy E )  is much simpler 
(and more systematic) than the variation of the pop- 
ulations themselves.) 

On the basis of the preceding discussion, it is evi- 
dent that, while P( V) has an entirely different char- 
acter from PO(V), the surprisal can often be well ap- 
proximated by a simple linear equation 

P(v)  = P(v) exp(-htfv)/exp(X,) ( 8) 
Since P(V) is a decreasing function of fv, it follows 
that A, must be negative. Note that  A, = dI(fv)/dfv 
is a differential measure of the deviation of the ob- 
served distribution P(V) from the a priori expected 
distribution PO( V). A given value of A, is sufficient to 
characterize the entire fv dependence of P( V). In this 
sense, A, plays the role of a temperature-like param- 
eter. Population inversion corresponds to  a negative 
value of A,. 

We also note that exp(A0) plays the role of a parti- 
tion function. 

(9) 

plot -r(fv) 

Q, = exp(X,) =cr”(V, exP(-Xtfv) 

(fv> = x f v p ( V ,  = -d In Q/dX, 

v 

The average value of fv is 

(10) 

This illustrates the formal role of exp(A0) as the par- 
V 
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Figure 3, Vibrational surprisal plot22 for the pair of isotopic reac- 
tions C1+ HI (DI) -I + HC1 (DCl). 

tive populations P(u) [or P(fv)] ,  and the prior (i.e.,  
not surprising) populations P ( u )  (assuming the ro- 
tating-vibrator a p p r o ~ i m a t i o n ~ ~  for the density of 
states of HF).  The ratio w ( f v )  = P ( f v ) / P ( f v )  is 
found to  be a smooth function of fv. The vibrational 
surprisal I ( f v )  = -In w ( f v )  is plotted us. fv, and 
from the slope of the straight line the vibrational- 
temperature parameter A, (A, = dI(fv/fv) is found 
to be -4.0. 

Figure 3 shows analogous results for the isotopical- 
ly related reactions (111): C1 + HI - HCl(u) + I and 
C1 + DI - DCl(V) + I. There is a significant differ- 
ence in the product vibrational state distributions for 
the two isotopic reactions. However, the vibrational 
surprisal plots have essentially the same slope, yield- 
ing A, = -8.0. Similar results obtain for the isotopic 
reactions F + H2, F + D2, and F + HD. The slopes 
of the vibrational surprisal plots are nearly constant, 
but there are small differences between the results 
for the HF-producing us. the DF-producing reac- 
tions.13338 

(38) M.  J .  Berry, Chern. Phys Let t . ,  27,73 (1974). 
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I-f v 
Figure 5 ,  PloW of the dependence of the most probable rotation- 
al energy disposal (fR(3)), in a given vibrational manifold, us .  1 - 
fv for the pair of isotopic reactions of Figure 3. 

tition function and of X,-l as a temperature-like pa- 
rameter. 

The method of chemiluminescenceZa can deter- 
mine not only the populations of the different uibra- 
tional levels but also the population of the different 
rotational levels within any given vibrational mani- 
fold. This is a conditional distribution, i.e., a distri- 
bution of rotational energy for a given amount of vi- 
brational energy, which we shall denote as P ( R  1 V). 
Since V is given, the available energy for rotational 
excitation is anywhere from 0 up to E - V. The nat- 
ural reduced variable (fraction of available energy in 
rotation) would then be25,27 

g, R I ( E  - V )  = fR/(1 - fv) (11) 

We thus expect that when P ( R I V )  is expressed in 
terms of gR9 the distribution would be independent 
of either the particular vibrational manifold or of 
isotopic substitution. 

A qualitative examination of known results for 
P(R1V) confirms that  it appears to be a function of 
g R  only, for all the vibrational manifolds of a given 
reaction. A more quantitative test is to determine 
the most probable rotational level (say 3) in each vi- 
brational manifold. The rotational energy of this 
level should be a linear function of E - V. Figure 5 
shows25 a plot of fR(3) us. 1 - fv for the pair of isoto- 
pic reactions C1 + HI (DI) - I $. HC1 (DCl), con- 
firming this expectation. 

For a detailed analysis of the distribution of the 
population of the rotational levels we need to exam- 
ine the (conditional) surprisal 

(12) I(Ri V )  = -ln [P(RI V)/Po(Rl  v ) ]  
where, since Vis given and R is specified 
P ~ ( R I V )  a sT1I2 = (I - fv - f R ) ’ ”  = 

(1 - fv)*/’(l - g,)”’ (13) 

In  the simplest case, i.e., a linear “rotational surpri- 
sal” 

I(Rl v) = const + eRgR ( 1 4  
o r  

P ( R I  v, = p(R1 v) exp(-e&g,,)/QR. (15) 
Here QRU is a normalizing factor. Thus the joint vi- 
brotational population distribution becomes 

P(R, V )  = P(Rl V ) P ( V )  = 

P ( R I  V)PO(V) exp(--XUfv -- B f i S R ) / Q  (16) 

The analysis of available experimental results25 
has consistently yielded quite small values of O R ,  i.e., 
rotational energy distributions are “not very surpris- 
ing.” 25226 (This means that  P ( R  I V) is quite close to 
P ( R  1 V) ,) Thus it is a reasonable approximation to 
take all rotational quantum states within a given vi- 
brational manifold to  be equally probable. In the 
language of statistical mechanics, the rotational 
states are essentially in “microcanonical equilibri- 
um.” 

Thus far we have centered attention on the analy- 
sis of the product internal energy states. But molec- 
ular beam techniquesl>4,8 often provide directly the 
products’ translational (recoil) energy distributions. 
By analogy to the linear surprisal plots found for the 
internal state distributions, we may expect the 
translational distribution to be of the form24 - 2 8 ~ 9  

(17) 

K f T )  = A, + &f, (18) 

For the prior (or reference) distribution P o ( f ~ ) ,  the 
RRHO approximation provides the result 

(19) 

This corresponds to taking an “analytic ap- 
proach.” We can employ an alternative, synthetic, 
scheme,25,26,28 generating the translation-energy dis- 
tribution from the vibrotational-energy distribution. 
Since T = E - V - R, P ( T )  = JdVJdR P(V,R)G(E 
- T - V - R ) .  In the RRHO approximation, and in 
the limit when OR - 0 and hv is not too negative, 
one can show analytically that XT = -X,/2. In other 
words, reactions which lead to population inversion 
and thus negative X U  will have positive values of AT.  

Finally, we note that the population distribution 
under analysis need not come from a reactive colli- 
sion. It is possible (e.g., by laser excitation) to selec- 
tively populate a particular vibrotational level of a 
molecule. One can then observe the distribution of 
final states which result when such a molecule col- 
lides with an inert partner, Figure 6 shows a suprisal 
analysis40 of the final vibrational energy v’ when an 
Iz molecule (in a state of given vibrational energy V) 
is deactivated by a collision with a rare gas atom. 

For the sake of brevity we have omitted consider- 
ation of the surprisal associated with energy con- 
sumption nor have we dealt with the interrelation 
between the reactant energy states and the resulting 
product state distribution,28,32 nor their variations 
with total energy. We refer the interested reader to 
the literature.21-36 

~ ’ ( Y T )  = @(.f~) exp(-X~f~) / Q  T 

o r  

P o ( f T )  = (15/4)fT1/*(1 - fT) 

(39) 11. L. King, H. d .  Loesch, and D. R. Herschbach. Furaday Ziiscuss. 

(40) M. Rubinsonand J . I .  Steinfeld, Chem. P h y  , 4,467 (1974). 
Chcm. Soc , 55,222 (1973). 
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Table I 
Measures of Specificity of Energy Disposal24 

Source  Exptl T r a j e c -  Exptl T r a j e c  - 

E ,  k c a l  mol" 34.0 34.0 34.0 34 .0  
v u  ) 0.71 0.74 0.71 0.72 

AS(vrb) .  e u  3.66 4.03 3.66 3.90 

React ion C1 + HI .-) I + HC1 C1 + DI --t I + DC1 

t o r i e s  t o r i e s  

A, -8.0 -8.4 -8.0 -8.4 

The Thermodynamic Approach 
The surprisal is a measure of the deviation of a 

particular population from the prior (or reference) 
value. One can also seek a measure for the average 
value (over the entire distribution) of this deviation. 
It turns out that  the average value of the surprisal is 
known as the entropy20321J4 of the distribution. 
Using, as an example, the population of vibrational 
levels, we obtain S ( v i b ) ,  the entropy of the vibration- 
al population, as 

S ( v i b )  = -R C p ( v )  In [P(V)/P(V)I (20) 

where R is the gas constant. 
It follows from the inequality In X 5 X - 1 that 

S(vib) 5 0, with equality for P(V)  = PO(V). We can 
thus define an entropy deficiency as the nonnegative 
quantity 

V 

A S ( V i b )  = SO'vib) - S ( v i b )  = 

RCP(V) In [ p ( V ) / @ ( V ) l  (21) 

Here SO(vlb) is the value when P = PO. Table I is a 
summary of the results of such an analysis for the C1 
+ HI (DI) reactions. The extensive vibrational popu- 
lation inversion in these reactions is reflected both 
by the large negative value of A, and the large entro- 
py deficiency. As expected, both A, and AScvib) are 
essentially the same for different isotopic variants of 
the same reaction. 

The entropy deficiency provides a compact numer- 
ical measure of the average deviation of the observed 
distribution from the prior (or reference) expecta- 
tion. Moreover, this measure is independent of 
whether the surprisal plot is linear or not. It is well 
defined for all situations, and the larger its magni- 
tude the more extensive is the deviation from the 
prior (or, microcanonical) distribution. The entropy 
deficiency provides us also with an important con- 
ceptual tool. To see this we need to examine briefly 
the concept of a thermodynamic weight .29 

Consider an  event which has several (say, n) dif- 
ferent possible outcomes and which is repeated N 
times. Let N,  be the number of trials which resulted 
in the ith outcome, i = 1, . . . , n. In principle, any set 
of numbers N, such that N = X,N ,  is a possible dis- 
tribution of outcomes. However, as  N - one par- 
ticular distribution (i. e., a particular set of numbers, 
N,) becomes much more probable. It can be shown 
that  this is the distribution of maximal thermody- 
namic weight. In the limit N - the thermody- 
namic weight W can be expressed as 29-31 

W = exp(-NAS/R) (22) 

Here W is the weight when all outcomes are equally 

V 

't I 

(v-V'VRT 
Figure 6. Surprisal plot40 for the vibrational deactivation of Iz* 
(u = 43) by rare gas atoms. The surprisal is plotted us. the energy 
transfer in the collision in units of RT (where T is the tempera- 
ture, K).  The bars indicate the range of values for different rare 
gas atoms. The surprisal (and its slope) is essentially independent 
of the mass of the deactivating atom. 

probable, and A S  is the entropy deficiency of the 
distribution. 

Thus, when an event is repeated a large number of 
times, only one particular distribution of outcomes 
will be observed, the one corresponding to maximal 
thermodynamic weight. If all outcomes are equally 
probable, this will be W. If not, this will be the dis- 
tribution with the smallest possible entropy deficien- 
cy. Moreover, in the limit of large N the distribution 
of minimal A S  will be overwhelmingly favored. (This 
maximal entropy principle is taken as an axiom in 
the Jaynes approach2Oc>e to  statistical mechanics.) 

In any molecular dynamics experiment one exam- 
ines many independent single collisions. We thus 
conclude that  the observed population distribution 
of the products will be the one with the minimal ed-. 
tropy deficiency. This does not imply, however, that  
invariably the observed population distribution 
equals the prior distribution (so that A S  = 0). The 
molecular dynamics can introduce constraints which 
imply nonzero surprisals and hence nonvanishing en- 
tropy deficiency. What it does imply is that, among 
all the possible distributions which are consistent 
with the dynamic constraints, the one which will be 
observed is the one with minimal entropy deficiency. 

To  apply this principle one can take either of two 
complementary paths. One is the synthetic route 
where we predict the distribution on the basis of as- 
sumed dynamic constraints, deduced from a detailed 
analysis23 of the dynamics or based on a simple 
physical modeP7 (or even on the basis of specula- 
tion26). The technical details of implementing this 
procedure have been extensively discussed in the lit- 
erature.23 2 7  

The complementary approach is the analytic 
0ne.29~30 An experiment measuring the population 
distribution has just been performed. What do the 
results imply? How much information about the dy- 
namics have we gained? 

We assume that the surprisal can be represented 
by a series in fv, e.g. 

I ( f v )  = xo + c x ( m ) f y m  (23) 
m= 1 
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The coefficients can be determined by fitting 
(23) to the experimental distribution. To each coeffi- 
cient there corresponds a “moment” 

Ctj’”) = C/’V”~(/’,) (24) 

Using the principle of minimal entropy deficiency 
one can show that the only coefficients h ( m )  which 
are nonvanishing are those for which the moments 
are independent pieces of information. (Two mo- 
ments, (fv”) and ( f ~ ” )  are independent if knowledge 
of one is not sufficient to compute the other.) 

As an example, consider the common case of a lin- 
ear vibrational surprisal ( i  e., where only the m = 1 
term in (23) contributes). Then all higher moments 
(fv”), m > 1 (and hence the expectation value of any 
function of f ~ . )  are determined by (fv). This is readily 
evident: if the surprisal plot is linear, and we thus 
know Xu, we can generate the entire distribution 
(using, say, (17)) and hence compute any other mo- 
ment (from (24)) or any other expectation value.29 

Another useful application of the criterion of mini- 
mal entropy deficiency is the determination of 
branching ratios34J5 for competing reaction paths. 
Consider, for example41 

FH + D Ova) 

i FD + H (IVb) 

One can show that the branching ratio (here, an 
intramolecular isotope effect) is related to  the differ- 
ence in the entropy deficiency between reactions a 
and b. One expects that a t  higher collision energies 
the branching ratio should be approximated by its 
prior value, r a b o  (which can be computed on the 
basis of simple statistical considerations). 

Concluding Remarks 
The information-theoretic approach has made pos- 

sible the compaction of data in the fields of molecu- 
lar beam kinetics, chemiluminescence, and chemical 
lasers. 

V 

F + H D -  

(41) R B. Bernstein and R. D. Levine, J Chem Phys , in press 

The surprisal analysis of vibrational population in- 
versions often leads to a one-parameter description 
of the disequilibrium in fast, exoergic, elementary 
reactions. This is of importance in characterizing the 
gain in chemical l a~e r s .14~33~6  Formerly an ill-de- 
fined “vibrational temperature,” T v l b  had been used 
for this purpose. However, there were a number of 
well-known difficulties associated with its use ( e . g ,  a 
different Tvlb was needed for each ti state!). It is 
more reasonable to express gain factors and lasing 
conditions in terms of A, instead of such Tb,b9s.  

An important aspect of the thermodynamic point 
of view is the use of the entropy as a state function, 
in the classical thermodynamic se.nse.30,36.42 For ex- 
ample, one can evaluate the entropy cycle associated 
with the operation of a laser36,43 (of which the chem- 
ical laser is a special case). This has considerable 
bearing on the efficiency and other operational. char- 
acteristics of the laser, a matter of some technical 
importance.g,33 

When one combines the measures of the specificity 
of energy disposal, the selectivity of energy consump- 
tion, and the propensity of energy transfer, one has a 
complete summary of the behavior of the system far 
from equilibrium. 

Of course, the most fundamental “practical” ap- 
plicatian is the simplification in the description of 
severely nonequilibrium state distributions. The key 
to the approach is the concept of the surprisal, the 
deviation from expectation on the basis of micro- 
canonical equilibrium. Clearly the deviation is a 
more smoothly varying function of the classical ener- 
gy variables than the populations themselves; there- 
in lies the practical advantage of the present ap- 
proach. 
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